
8. P. Vernotte, "Paradoxes in theory of continuity for heat equation," C. R., 46, No. 22, 
3154-3155 (1958). 

9. V. A. Danilenko, V. M. Kudinov, and A. S. Makarenko, Effects of Memory on Dissipative 
Structures Forming during Fast Processes [in Russian] (Preprint Inst. Elektrosvarki 
Akad. Nauk UkrSSR), Kiev (1983). 

i0. V. L. Kolpashchikov and A. P. Shnip, "Thermodynamic theory of linear heat conductor 
with memory," in: Problem of Heat and Mass Transfer [in Russian], Nauka i Tekhnika, 
Minsk (1976), pp. 102-123. 

ii. D. N. Zubarev, Statistical Nonequilibrium Thermodynamics [in Russian], Nauka, Moscow 
(1975). 

12. A. S. Makarenko, "Dispersion of difference schemes for Klein--Gordon equation," Chisl. 
Metody Mekh. Sploshn. Sredy, 13, No. 3, 81-90 (1982). 

13. A. S. Makarenko and M. N. Moskal'kov, "Numeriaal solution of wave equation," Manuscript 
Filed at the All-Union Institute of Scientific and Technical Information, No. 4117-82 Dep. 
(1982). 

THERMAL STRESSES IN A HEAT-SENSITIVE SPHERE 

Yu. M. Kolyano and I. N. Makhorkin UDC 539.377 

A solution is obtained for the quasistatic problem of thermoelasticity for a heat- 
sensitive sphere heated by a heat flux. Thermal stresses are investigated in a 
steel sphere. 

Let us examine an isotropic elastic sphere of radius R, free from external load but sub- 
jected to sudden heating by a heat flux of constant density q. The initial temperature of 
the sphere is zero. All the physicomechanical characteristics of the material except the 
coefficient ~ are functions of the temperature. 

For many materials [i] the temperature dependences of the heat conduction At(t) and 
volume specific heat Cv(t) coefficients are identical in nature, whereupon their coefficient 
of thermal diffusivity is a = It(t)/Cv(t) = const. Then by using the Kirchhoff variable 

t* 

8" (t*) = f ~ (D a~ (1) 
0 

the  n o n l i n e a r  h e a t - c o n d u c t i o n  problem i s  l i n e a r i z e d .  We consequen t ly  a r r i v e  at  a boundary-  
va lue  problem for  the Ki rchhof f  v a r i a b l e :  

0 (p~ 88* ] _  08* 
p-2..~_p __OF / OFo ' (2) 

OS_* J 08* Fo= 1 @ io=0 = 0, --O~- = KiS+(Fo), (3) 

8" (p, 0) = 0, (4) 

whose solution has the form [2] 

8 * = K i [  3Fo 3--5P~ ~ 2sin~nP3 e x p ( - - ~  F o ) ] ,  (5) 
L l0 r~=l ~np COS ~ j 

where t* = t/to; p = r/R; Fo = a~IR2; It(t*) = It(t)IX~~ Ki = qRII~~ is the Kirpichev 
L 

criterion; ~n are the roots of the characteristic equation tan ~ = ~. 

Knowing the expression for the Kirchhoff variable and the temperature dependence of the 
heat-conduction coefficient, we can determine the temperature field in the sphere from the 
relationship (i). 
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To determine the thermal stresses occurring in the sphere, we use the formulas [i] 

[ v) Ou + 2 v  u . - - ( 1 - - v ) ~ * ] ,  
aT= G*(t*) (1 ~ ao 9 

I ] % = % = ( ~ * ( f * )  , ~ +  P - - ! 1 - - ~ ) ~ *  , 

(6)  

where the displacement u satisfies the equation 

ap ~ - ~  (P~) -~ 1 a(3* Ou + 1 - - v  9 - a9 
G*(f*) Op 

Here 

(7) 

U 1 ---2v 
u -  R=~O)t~, o ~ -  2Gez~o)t ~ au ( i = r ,  % @). 

t, (~ (t) ~ , =  1 + v oct (t) G*(t*) -- �9 ! ~* (~) dm ~* (f*) - ~io) , 
1 Go 'V 

We t a k e  the  boundary  c o n d i t i o n s  in  t h e  form 

uIp=o = 0, ~i,=~ = 0. 

To solve the boundary-value problem (6)-(8) we proceed as follows. 
functional dependence G*(t*) 
sion 

where 

(8) 

We approximate the 
in its domain of definition to a given accuracy by the expres- 

rz 

G* (t*) = c~ ~ + "~ (G*+, - c*)  s+  ( t * , -  f*), (9) 

1, ~ > o ,  
t ~ < t ~ <  ... < f ~ < f ~ ,  s+(b= o, ~ o ,  

is the asymmetric unit function, and (t~, t~) is the temperature interval of the change in 
shear modulus. 

Substituting (9) into (7) and taking into account here that time plays the part of a 
parameter in (7) while t*(p, z) is defined for each specific case, we obtain at an arbitrary 
fixed time 

where 

Op P- (9~u) ~- X Gq~+i+I, --Gq~+i Ou ~___2v U 
/=  1 Gqz+/+ 1 1 - -  v 9 

a)*) 6+ (t* * Of* 00)* 
-- -- fq~+i ) . . . . . .  , 

09 Op 
f * <  . . .  < t *  * . 

< max t* < f*~+m~+l < �9 �9 < f*, 

m i n t * =  rain t*(9, x), max t * =  max t*(9, x). 
pe[0,17 pe[0.1] 

Since t*qz+i (l.~]~m~) satisfies (ii) while t*(p, T) is monotonic for pC[0, i] 
in our case, then the equation 

t* (p, ~) - tt~+~ = o 

has just one prime root pq~+j at each fixed time. 

If the time is considered as a parameter, the following relationships are valid: 

S+ It* (p, "0-- t* [sign+ / at* ~,+il = S+ L I )(P--P~+)] ' \ 0p oq~+i 

(io) 

(n) 

and TC [0, oo) 

(12) 
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8+[t* (9, ~)-- t*q~+j. 1= Ot*oi) --I 8+ sign+ \ 09 oq~+, (9-- 9%+) �9 

In that case, taking account of (13) we have from (i0) 

q ~ + / + l - - -  qT+] Ott 2V U 9 - 2 - - ( 9 ~ u )  q- W -~ --(D* sign+( at* 
a%+/+l 1 - -  v P oq~+i \ 09 Pqx+] ) x 

(13) 

(14) 

Integrating (14), we obtain 

u(9, "0 = + 9  -3[H(P, ~ ) + D I - - Z  
]=1 

( 
3G*~+i+i 

3 

Pq'~---+il [sign+ ( 0t* 
9 2 / ]G''OqT-7"iS+ \~90q'~-r])(9--~)q'c-F])] . 

(15) 

Substituting (15) into (6), we find expressions for the thermal stresses 

where 

O'tp 

(Yr 
2 ( l _ 2 v ) G . ( t . )  I (1 + v ) C  = ~ t2 (1 - -2v)  +39-3[H(9 '  ~ ) + D I - -  

m~ * * 3 --'~x.a G%+i+I--G%+](~ _ _  _~_ ~ . l + v  29q~+] ) X 
/=1 2Oqx+i+l 1 -  2v p 3 

(1 -4- ~) C 
= Z s = ( 1 - - 2 v )  G*(t*) 3(1--2v) 

m e * * %+j+, - %+; { _ _  

G* k ,=I 3 qxi] +1 

X ~l]oqT+ i 

+ 9 -3 [H (P, "~) + D] - -  (D* (9, "0-- 

3 
1 + v 9q~+i \ 
1 - -  2v p3 ) X 

�9 Ot* " 

[ ~ 9 0% l~ 

P 

o ~1%+/= + I - - ~  9 Oq~+/ 

K!%iD.  K~qx+] ) 1 - -  2v = CKI%+]) + DK(2%+D @ -~  , - -  X 
3(1 --  v) 

]f(q~+/) : 

X I ':/ i 1 + v L K (%+i) 
1 - -  2 v  u l 

i=1 

/-i ] 2 ( 2 ~ -  1) -3 1 
3 (1 - , , )  3p~+~- + -?-- ~ L , ~ +  '~ ; 

i=1 

=.2(2v- -1 )  [ 3 1 /-~ ] 
[ H%+, ' Z" 

G, 3 L i J :  Oq~+i+l - -  q~+i ( 1-j- l~--"~-~ "~ ~2[q~+i ) 

q,r+i+ 1 9q.c+ i ' 

(1 ~ ] ~ m~); sign+~l = 2S+ 01) - -  1. 

(16) 

We find the integration constants C and D from the boundary conditions (8) in the form: 

C = a2sal~ - -  alsa2~ , D -- a~la13 - -  a~3al' , (17) 
alla22 -- a21a12 ~11a22 -- ~21a12 
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Fig. I. Temperature dependence 
of the shear modulus G*(t*) and its 
approximation by unit functions for 
different methods of selecting the 
coefficients G~. 
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Fig. 2. Change in the temperature t* as a func- 
tion of the radius p for different values of the 
Fourier parameter Fo. 

Fig. 3. Dependence of the stress o~=Oe on the 
Fourier parameter Fo on the surface of a sphere 
(p : l ) .  

where 

aim = blm + Zlra; bl l  = O; b12 = 1 ; b13 = O; 

a2~ = b 2 m -  Z2~; bm =- 1 + �9 ; b 2 2 : - - 3 ;  b m = - 3 H ( 1 ,  "~); 
2 (I - -  2v) 

m~ O* G* 
z,,.= ~ 3~*~+j+1 m vq~+; o+ 

] =  1 p qT+j 

o o. o. ( )] 
12ni = ~ qT -~-.f'Jr-1 - -  qT"k i gAqT-~-i ) 1 +  V 2 3 

, s=, 2c~+j+, 1 - ~  + P~+J s+ s i g n + t - ~ 0  1 + j 

The temperature fields and the thermal stresses they impose in the steel sphere are in- 
vestigated by using (5) and (16), where the heat-conduction coefficient and the temperature 
coefficient of linear expansion of the steel are linear functions while the shear modulus is 
a quadratic function of the temperature [i, 3]: 

~,*= 1 - - k . t * ,  ~ * =  l + T / * ,  O * =  l--~l *=, (18)  

w h e r e  t o  = 333~  k ,  = 0 . 1 3 2 ;  y = 0 . 5 5 4 ;  6 = 0 . 1 2 5 .  T a k i n g  a c c o u n t  o f  ( 1 8 ) ,  t h e  t e m p e r a t u r e  
field of the sphere was here determined according to (i) from the formula 

l * =  1 ( 1 - -  V 1 - -  2 k . e *  ), (19)  
k .  

while the temperature dependence of the shear modulus (18) was approximated in the tempera- 
ture range (t~, t~) by the dependence (9), in which 
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[ [  In G* (t~) - -  In G* (t~ ) ] 

= ln(1 + s) ' 

* -- = 0, the coefficients G i are de- t i are roots of the equation G*(t~) G*(t~)(l + E) n+:-i * 
termined by the relationships 

G]' G* (t}), * G* e)~+l- i ,  - -  (20)  = G~+~ = ( t~)(1  + i ~ 1, n, 

o r  

, 8 ) n +  1 - i  G? = G* ( t ~ )  <1 T , i = 1, ~ + ~, ( 2 1 )  

which assured approximation of the real dependence of the shear modulus (18) on the tempera- 
ture with an excess or deficiency, respectively, ~ is the maximal relative deviation of the 
approximating dependence (9) from the actual (18). Computations were performed for Ki = l, 

= 6%, v = 0.4. 

The dependence of the dimensionless shear modulus (18) (solid curve) on the temperature, 
as well as its approximation to 6% accuracy by (9), in which G~ was determined by (20) or 
(21) (solid and dashed step curves, respectively), are shown in Fig. i. The change in the 
temperature t* (solid curve) as a function of p is presented in Fig. 2 for different values 
of the parameter Fo. The dash-dot lines denote the appropriate values of the temperature in 
the case of a constant heat-conduction coefficient equal to the reference value. 

The dependence of values of the dimensionless circumferential stresses ~=~e on the 
sphere surface is represented in Fig. 3 as a function of the dimensionless parameter Fo. The 
curves 1 correspond to stresses in the heat-sensitive sphere, when the coefficients G~ in 
(9) were determined by (20) or (21) (solid and dashed curves, respectively). Presentgd for 
comparison in Fig. 3 are. analogous results when a) only the temperature dependence of the 
heat-conduction coefficient was taken into account while all the rest were taken constant and 
equal to appropriate reference values (curve 2) and b) all the characteristics were taken 
constant and equal to appropriate reference values (dash-dot curve). 

Analysis of the results obtained indicates that taking account of the temperature de- 
pendence of the material characteristics results both in a quantitative and qualitative 
change in the thermal stresses; neglecting the temperature dependence of the characteristics 
results in significant error in the determination of the thermal stresses, which reach ~ 62% 
in the case under consideration; utilization of the approximation of the shear modulus by 
(9), in which G~ is determined by (20) or (21), results in a relative error in finding the 
magnitude of the temperature stresses which does not exceed the accuracy of the approxima- 
tion. 

NOTATION 

r, %0 , spherical coordinates; o~(i=r, r e), stress tensor components in the spherical 
coordinate system; t, temperature field of the body; T, time; U, radial displacement; %t(t), 
heat-conduction coefficient; Cv(t) , volume specific heat; at(t) , temperature coefficient of 
linear expansion; G(t), shear modulus; ~, Poisson ratio; q, heat-flux density; to, %~, ~ 
a~, ) Go, reference temperature, heat-conduction coefficient, volume specific heat, temperature 
coefficient of linear expansion, and shear modulus, respectively. 

l. 
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